39 research outputs found

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. I. Flight Kinematics

    Get PDF
    Hummingbirds are nature’s masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the ‘helicopter model’ that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. II. Aerodynamic Force Production, Flight Control and Performance Limitations

    Get PDF
    The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres

    Respiratory Evaporative Water Loss During Hovering and Forward Flight in Hummingbirds

    Full text link
    Hummingbirds represent an end point for small body size and water flux in vertebrates. We explored the role evaporative water loss (EWL) plays in management of their large water pool and its use in dissipating metabolic heat. We measured respiratory evaporative water loss (REWL) in hovering hummingbirds in the field (6 species) and over a range of speeds in a wind tunnel (1 species) using an open-circuit mask respirometry system. Hovering REWL during the active period was positively correlated with operative temperature (Te) likely due to some combination of an increase in the vapor-pressure deficit, increase in lung ventilation rate, and reduced importance of dry heat transfer at higher Te. In rufous hummingbirds (Selasphorus rufus; 3.3 g) REWL during forward flight at 6 and 10 m/s was less than half the value for hovering. The proportion of total dissipated heat (TDH) accounted for by REWL during hovering at Te\u3e40 °C was b40% in most species. During forward flight in S. rufus the proportion of TDH accounted for by REWL was ~35% less than for hovering. REWL in hummingbirds is a relatively small component of the water budget compared with other bird species (b20%) so cutaneous evaporative water loss and dry heat transfer must contribute significantly to thermal balance in hummingbirds

    Citizen-science data provides new insight into annual and seasonal variation in migration patterns

    Full text link
    Current rates of global environmental and climate change pose potential challenges for migratory species that must cope with or adapt to new conditions and different rates of change across broad spatial scales throughout their annual life cycle. North American migratory hummingbirds may be especially sensitive to changes in environment and climate due to their extremely small body size, high metabolic rates, and dependence on nectar as a main resource. We used occurrence information from the eBird citizen-science database to track migratory movements of five North American hummingbird species (Archilochus alexandri, A. colubris, Selasphorus calliope, S. platycercus, and S. rufus) across 6 years (2008–2013) at a daily temporal resolution to describe annual and seasonal variation in migration patterns. Our findings suggest that the timing of the onset of spring migration generally varies less than the arrival on the wintering grounds. Species follow similar routes across years, but exhibit more variation in daily longitude than latitude. Long distance migrants generally had less annual variation in geographic location and timing than shorter distance migrants. Our study is among the first to examine variation in migration routes and timing for hummingbirds, but more work is needed to understand the capacity of these species to respond to different rates of environmental change along their migratory routes

    A Snapshot of Hummingbird Migration in Southeastern Arizona

    No full text

    Lucifer Hummingbirds Banded in Southeastern Arizona

    No full text

    Nestling growth and plumage development of the Black-chinned Hummingbird (Archilochus alexandri) in southeastern Arizona

    No full text
    Crecimiento de polluelos y desarrollo del plumaje del colibrí barba negra (Archilochus alexandri)en el sureste de Arizona Estudiamos el desarrollo del plumaje y crecimiento de los polluelos del colibrí barba negra (Archilochus alexandri) en el sureste de Arizona, EUA. Los polluelos vuelan después de 20-22 días de haber eclosionado y llegan a un peso máximo de 4.16 g antes de comenzar a volar; lo que representa aproximadamente el 126% del peso de los adultos. Los polluelos nacen con 11 pares de neossoptiles de color café claro, organizados en dos hileras dorsales. Las plumas del cuerpo comienzan a emerger de la piel a los 6 días de edad. Las plumas de las alas comienzan a emerger alrededor de los 12 días, y las plumas del cuerpo comienzan a emerger alrededor de los 9 días de edad. Aquí presentamos una guía fotográfica que será útil para estimar la edad de los polluelos en campo, con base en el desarrollo de las plumas, así como los primeros registros publicados de las tasas crecimiento de esta especie

    DLW daily energy expenditure measurements

    No full text
    Doubly-labelled measurements of daily energy expenditure for broad-billed hummingbirds in Arizon

    Modeled values for hummingbird daily energy budget

    No full text
    Includes multiple scenarios for daytime activity, thermoregulation, torpor use, and BM
    corecore